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Abstract

In many fields of engineering practice, applied loads are not uniformly or linearly varying distributed; hence, they are
more realistically depicted as non-linearly varying distributed. Also, in calculating the displacements/stresses within the
soil/rock when the foundations are relatively deep, it might be advisable to use solutions derived for the case of loads
applied within the elastic medium. In this work, solutions for displacements and stresses in a transversely isotropic half-
space subjected to three-dimensional buried non-linearly varying triangular loaded region are presented. Non-linearly
varying loading types include a quadratic-varying load in the x direction, a quadratic-varying load in the y direction, a
square-root-varying load in the x direction, and a square-root-varying load in the y direction, all distributed over a
right-angled triangle. These solutions are obtained by integrating the point load solutions in a Cartesian co-ordinate
system for a transversely isotropic half-space, and they are limited to the planes of transverse isotropy to be parallel to
its horizontal surface. The present solutions can more realistically simulate the actual loading problem, and also they
are clear, concise, and easy to use. The proposed solutions specify that the type and degree of material anisotropy, the
dimensions of loaded region, and the loading types decisively influence the displacements and stresses in a transversely
isotropic half-space.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Three-dimensional; Buried; Quadratic-varying triangular loads; Square-root-varying triangular loads; Transversely
isotropic half-space; Displacements; Stresses

1. Introduction

In most problems of geotechnical engineering dealing with the probable behavior of foundations, the
calculation of the induced displacements and stresses inside the soil/rock by the foundation loads is the first
requisite. In general, the displacements and stresses are approximately estimated by assuming the soil/rock
to behave as a linear elastic, homogeneous, and isotropic continuum. However, better results should be
obtained by considering the anisotropic deformability for many natural soils are deposited by geological
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Nomenclature

E, E', v, v, G' clastic constants of a transversely isotropic medium

h the buried depth

ILw length along x-axis and width along y-axis, respectively

Pali ~ Pasi> Psti ~ Dsgi elementary functions for the displacements and stresses induced by a point load,
respectively

go; ~ g6;(J = x,y,z) components of the load function

4gcj,qpj» 9e;(j = x,,z) load components at the three vertices (C,D,E) of a right-angled triangular
region

Ocj» Opj» Ori(j = x,y,z) total loads at the three vertices (C, D, E) of a right-angled triangular region

1, ~ 5, 14 ~ 1%, integral functions for the displacements and stresses induced by quadratic-varying
triangular loads in the x direction, respectively

i~ a8 8 ~ 13 integral functions for the displacements and stresses induced by quadratic-varying

triangular loads in the y direction, respectively
& th ~ 1. integral functions for the displacements and stresses induced by square-root-
varying triangular loads in the x direction, respectively

135, ~ 135, 11 ~ 1%, integral functions for the displacements and stresses induced by square-root-
varying triangular loads in the y direction, respectively

[U }t(‘“") the displacement components induced by quadratic-varying triangular loads in the x direction

[U }t(”“f) the displacement components induced by quadratic-varying triangular loads in the y direction

U the displacement components induced by square-root-varying triangular loads in the x

g5
L4l

~t

direction

[U}t(q"") the displacement components induced by square-root-varying triangular loads in the y
direction

Greeks

[cf]’(q3f) the stress components induced by quadratic-varying triangular loads in the x direction

o]’ the stress components induced by quadratic-varying triangular loads in the y direction

)

o]

(6] the stress components induced by square-root-varying triangular loads in the x direction
[o] @) the stress components induced by square-root-varying triangular loads in the y direction

sedimentation over a period, or rock masses cut by discontinuities. For example, an anisotropic rock can be
modeled as either an orthotropic or a transversely isotropic material. This work addresses the elastic
loading problem of displacements and stresses for a transversely isotropic half-space.

It is well known that the displacements and stresses in a transversely isotropic half-space subjected to an
arbitrarily shape loaded area can be estimated by dividing the loaded area into several regularly shaped sub-
areas, such as rectangles and triangles. Several loading solutions for computing displacements and stresses,
include an upward linearly varying load, a downward linearly varying load, a uniform load, a concave
parabolic load, and a convex parabolic load on a rectangle have been proposed by Wang and Liao
(2002a,b). Nevertheless, it is recognized that the techniques of computational geometry for triangular mesh
generation is more accurate than anyone else. Also, a right-angled triangle forms the elementary of a
general one by the principle of superposition (Wang and Liao, 2001). The closed-form solutions for dis-
placements and stresses subjected to three-dimensional buried right-angled triangular loads in a trans-
versely isotropic half-space have been presented by Wang and Liao (2001). The loading types in their
solutions include a uniform load, a linearly varying load in the x direction, and a linearly varying load in the
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y direction, respectively. However, one of the fundamental problems in a transversely isotropic half-space,
which hitherto have received little attention, is that of determining the displacement and stress fields due to
loading in the form of non-linear distributions of three-dimensional pressures. Hence, non-linearly varying
loads encountered might be more realistically simulated as quadratic-varying or square-root-varying loads.
To the best of authors’ knowledge, no solutions of displacements and stresses for a transversely isotropic
half-space subjected to the above-mentioned triangular loads have been presented. The elastic solutions
derived in this paper include four loading types, respectively, quadratic-varying triangular loads distributed
in the x and y directions, and square-root-varying triangular loads distributed in the x and y directions. The
present solutions can be obtained from directly integrated the point load solutions (Wang and Liao, 2001).
Namely, this work is an extension of Wang and Liao’s solutions (2001) to the three-dimensional buried
non-linearly varying triangular loads on a transversely isotropic half-space. The proposed solutions indi-
cate that the buried depth, the degree and type of material anisotropy, the dimensions of loaded region, and
the loading types affect the displacements and stresses in a transversely isotropic half-space. Two illustrative
examples are given to investigate the effect of rock anisotropy, and the dimensions of loaded region on the
vertical surface displacement and vertical normal stress in the medium acting by non-linearly varying tri-
angular loads on its horizontal surface. Furthermore, in order to elucidate the effect of loading types, the
calculated results by Wang and Liao (2001) for a vertical uniform triangular load, a linearly varying tri-
angular load in the x direction, and a linearly varying triangular load in the y direction, on the displacement
and stress are also compared.

2. Displacement and stress solutions due to various non-linearly varying right-angled triangular loads

In this work, solutions for the induced displacements and stresses in a transversely isotropic half-space
by three-dimensional buried right-angled triangular loads, as depicted in Figs. 1(a) and 2(a) are derived.
The loading types in Fig. 1(a) can be modeled as uniform loads (Fig. 1(b)), quadratic-varying loads dis-
tributed in the x direction (Fig. 1(c)), and quadratic-varying loads distributed in the y direction (Fig. 1(d)).
The solutions for displacements and stresses in the transversely isotropic medium acting by uniform loads
(Fig. 1(b)) have been proposed by Wang and Liao (2001). Similarly, in Fig. 2(a), the loading types also can
be expressed as uniform loads (Fig. 2(b)=Fig. 1(b)), square-root-varying loads distributed in the x
direction (Fig. 2(c)), and square-root-varying loads distributed in the y direction (Fig. 2(d)). The planes of
transverse isotropy are assumed to be parallel to its boundary surface. Integrations of Wang and Liao’s
solutions (2001), which due to a three-dimensional buried point load (P,, P,, P.) acting in the interior of a
transversely isotropic half-space, are performed. In the point load case (Wang and Liao, 2001), defining
Pati ~ Pasi and pgy; ~ pgg; as the elementary functions for the displacements and stresses, respectively. Hence,
solutions for displacements and stresses in a transversely isotropic half-space subjected to above-mentioned
triangular loads (Figs. 1(c), (d) and 2(c), (d)), can be integrated from the elementary functions (pg; ~ pysi
and p); ~ pg;) of the point load solutions. The solutions for induced displacements and stresses at corner C,
by the loading of Figs. 1(c), (d) and 2(c), (d) are presented below.

Figs. 1(a) and 2(a) show a transversely isotropic half-space subjected to three-dimensional buried loads
at the depth of h on a right-angled triangle (1 CDE). The loading types can be modeled as a load function
q(x,y). However, ¢(x,y) can be composed of a uniform (go;, Fig. 1(b) = Fig. 2(b)), linearly varying loads in
the x (q1;) and y (g»;) directions (Wang and Liao, 2001), quadratic-varying loads in the x (¢3;, Fig. 1(c)) and
y directions (g4;, Fig. 1(d)), and square-root-varying loads in the x (¢s;, Fig. 2(c)) and y directions (gs;, Fig.
2(d)), respectively, as follows:

X y X\ 2 Y2 x y
q(x,y) = qoj +q1; * (7)+92j *(;)Jr%j *(7) +q4 * (;) +4qs; *\/;4"]6] *\/; (1)
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Fig. 1. Three-dimensional buried quadratic-varying loads on a right-angled triangle region: (a) uniform and quadratic-varying tri-
angular loads in the x, y directions; (b) uniform loads; (c¢) quadratic-varying triangular loads in the x direction and (d) quadratic-
varying triangular loads in the y direction.

where go; ~ ¢¢; (j = x,,z) are constants. The solutions for g, (three-dimensional buried uniform loads), ¢y,
(three-dimensional buried linearly varying loads in the x direction), and ¢,; (three-dimensional buried
linearly varying loads in the y direction) can be found in Wang and Liao (2001). The other solutions for
displacements and stresses subjected to g3; (Fig. 1(c)), q4; (Fig. 1(d)), ¢s; (Fig. 2(c)), and g¢; (Fig. 2(d)) are
proposed in this paper.

Utilizing the elementary functions pq;; ~ pasi> Psti ~ Pssi» and Eq. (1), the solutions for displacements and
stresses at point C, induced by three-dimensional buried g¢3; ~ g¢; loads can be derived. Replacing the
concentrated force by q3j(§)2 dydx, q4j(£)2dydx, q5j\/§dydx, and ge;/Zdydx in the point load solutions
(Wang and Liao, 2001), respectively, the solutions for displacements and stresses can be obtained by
integrating y from 0 to (w/Il) % x, and x from 0 to /, as

U t U t(g3;) U t(q4;) U t(gs;) U t(q67)
o o
Leow«x [P 2 1ew«x [P P2
= g3 * —) dydx +qu; * =) dydx
/ w
0Jo a 0J0 o
1rw/n«x [P - 1rw/nsx [P Y
+gs; * // \/;dde‘i'q@' * // \/:dydx (2)
0Jo o 0J0 g w
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Fig. 2. Three-dimensional buried square-root-varying loads on a right-angled triangle region: (a) uniform and square-root-varying
triangular loads in the x, y directions; (b) uniform loads; (c) square-root-varying triangular loads in the x direction and (d) square-root-
varying triangular loads in the y direction.

where the displacement components [U] = [u,, u,, uZ]T, the stress components (] = [0y, Gyy, Oz, Tay, Tyes rzx}T
(superscript “T” denotes that the transpose matrix); the superscripts ‘t’ and ‘p’ express the displacement and
stress components that are induced by a right-angled triangular load and a point load, respectively; the
superscripts #(gs;), 1(q4;), t(qs;), and #(qe;) express the displacement and stress components that are induced
by quadratic-varying loads in the x direction, quadratic-varying loads in the y direction, square-root-
varying loads in the x direction, and square-root-varying loads in the y direction, on a right-angled tri-
angular region, respectively.

In Figs. 1(a) and 2(a), the relationship between the total loads (Qc;, Op;, OF;) (j = x,¥,z) and the load
components (q¢;, 4n;> 95;) (j = x,¥,z) at the three vertices (C, D, E) can be expressed as follows:

QCj 1 00 qcj
Opj| =1 1 0] |gp (3)
Or; 1 0 1] |qg

Knowing the total loads or the load components at the vertices, the coefficients of load function (qy;,
q3; ~ ¢s;) can be determined by using Lagrangian interpolation technique (Murti and Wang, 1991). For
example, the relationship between (qo;, 93/, 44/)s (90> 455> 96)> (Qcj» Opjs Q) and (qc)» qp;> qr;) are given as
follows:
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qo; qo; | (X2 —xan xay —xwys xin —xon | | Qg
Q| = |45 | = I =) »B=n =0 Op;
q4;j 9o X3 — X2 X] — X3 X2 — X QEj
IR (J’Z - ys) - xz()’1 - ys) + xS(yl - )/2) X3y1 — X1)3 X1)2 — XoW qcj
=7 0 »i—n N =n dpj (4)
0 X1 — X3 X2 — X1 qEj
1 X1 yl
where A=1|1 x» »|.
I x3 s

However, as shown in Figs. 1(a)-(d) and 2(a)—(d), the co-ordinates of the three vertices (C, D, FE) are:
C(x1,n) = (0,0), D(x2,3) = (1,0), E(x3,3) = (I,w). Then, utilizing Eq. (4), the coefficient of load function
can be obtained. Table 1 lists the relationship between (qo;, g3, 4;), (qo;» 455> 4s;) and (qc;» gp;» qE;), as shown
in Figs. 1(a)—(d) and 2(a)—(d).

The explicit solutions of displacements and stresses for the proposed four loading types can be
regrouped as the forms of point load solutions (Wang and Liao, 2001). Hence, only the displacement
and stress integral functions for quadratic-varying triangular loads distributed in the x and y direc-
tions, and square-root-varying triangular loads distributed in the x and y directions, respectively, are
presented.

2.1. Integral functions for quadratic-varying triangular loads distributed in the x direction

wz;  w[(I*?+R?)z> —R,;(R> - R> + 122 z [
[331[: > [( lw) i [4( Iw li 1)]+_12D1+_D2 (5)
2R3, 3IRY, 31 3
gy 0D (R =23 o
! 6R],
t?z _ R?i szl Wz(lz + R%w)z? + Z4R?wi (7)
B3R 2R2, 3RS,
wz;Rp 1 z w(l? + 2R3 )2}
tq3. — _ A\ wi ‘p, _Zip AD g
@ = gp T30 T3p gy, O (8)
t(“ . ZiRli lzl'RlWi + ID + Z? D IZ;5 D (9)
6l TR, 36T 6RS,
Table 1
Relationship between (qo;, g3/, 947), (qoj> 4s/» 96) and (q¢;» qnj» qi7)
Case Figs. 1(a) and 2(a) Figs. 1(b) and 2(b) Figs. 1(c) and 2(c) Figs. 1(d) and 2(d)
Condition Qcj # O # Ok # 0 9¢; # 0, qpj = q5; =0 qpj # 0, 9c; = g5 =0 qr; #0, gc; =qp; =0

qoj qoj qcj qcj 0 0
4| = g5 | = qpj 0 qpj 0
44 qe; (98 — 4bj) 0 —qp; qzj
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t336i = tfﬁi + t:ﬁi (10)
WRn:  w(l? +2R3)z? z;\2
4 = - Wi p ( —) D 11
S 2R%w 2 ZzR?w ? ! ? ( )
Rii IRp; 1 /z;\2 122
t‘“A:_————(—)D —5D 12
2= o, a\7) P oy (12)
o~ wz (ﬁ)le (13)
83t I(R[Wi + Z,‘) l
w? Pz z
B = ! —22(R); — z; 14
sdi 2R?w + R%W(le T Zi) 12 ( 1 Z, ) ( )
lw  w(P+R )z zi\2
i = — b= — (=)D 15
S TR IR (R + 21) (7)o (15)
tgéi = tg;i - tg;i (16)
12W(R[W,' - 42[) 312WZ<2
- ip 17
s7i ZR?W ZR?W 3 ( )
W 2(21 + R? )zi — IRy, z;i\2 121> —w?)zZ?
M I )Zi wil _ (_> = Wip 18
S8 2IRY, 1) 2R3, ’ (18)

where R; = /P2 +2}, Ry =VIE+w., Ryi=+/P+w'+22, D =tan™! ¥ —tan™' 22 D, = In|Rutr|

IRpi® Rj;
o Rpyy+R i - Rpitzi o Ry+1
Dy = In|Retfis | P, — In| B2 || Dy — In | R,

2.2. Integral functions for quadratic-varying triangular loads distributed in the y direction

Iz(P+R)  {2w’2 + Ri[R2, (217 + R?) — 2w*2?]} Pz (1> —2%)
AT ! Iw i Wil lw Iw i _lD _ /D 19
dli 2wR3, + 6WR?, + w2 ! 2w? 2 (19)
o _ (PR HZ R, + W) + Rui[PRY, — (R, +v?)7]} (3P — 7)) D,
dzi 2wR3, 3wR}, 3w?
1(I> —32%)
) p 20
e (20)
g _ 2P =R Pz w2 — PR[R (P +R:) — (R, + w?)] lzz,»D (1)
a3 3n? 2R2, 3wIR], w2t
?  PzR,, P (212 + R%)z; wz?
t‘]4_:_ iMwio b _ li :D ip 22
M3 T 6wR2, 3w? ow? 2+ 6R3, (22)
[ 2IzR; (P +3R2)zR,; I z3 I2R2 +w?)z}
t‘]4.:_ M Iw/<1 wz__D Zip —#D 23
B =g T By 6w?R2, IR Vol 6w R3 ’ 23)

Iw
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fﬁ‘&» = t:ﬁi + thiéi
PR,; (I>=2 wz?
= — ( 2’)Dz— L D;
2wR;, 2w 2R;,
/ (1> + R2 )R, i\ 2 I(2R% + w?)z?
t;[éi:__leiJ'_ ( 2[112)) li _ (Z_) D5+ ( [w2 ;/V)Zz D3
% 2w?R;, w 2wiR;,

= L
s3i W(lei + Zi)

Zj 12

1 = — =Ry _7+L
i 1
st w2 2R? w'Rj,

Iw

& Iwz;

/
fs = E+

94 __ 4494 94
ts6i - ts3i - tsSi

4 =switch x, [ withy, win %,

4 = switch x, [ with y, win %,

2.3. Integral functions for square-root-varying triangular loads distributed in the x direction

q5_21wz,» 2IwR;,; 2ID 2
WEORL, 3R, T3 3

Zj
— ﬁ (ZiDl — IDZ)

(

2

1\2
Wiz + P(R;, + w)Rp] + (W) D,

/
——(ID D
ZWR%W +R%W(le. ) Wz( 1 +2z:Dy)

w 1 2
—Laa1 — — 1 —1I,
R i = = laa + ” ld3>

R—21x1d1 - led3)
Iw

qs ZWZZi 2 Zlewi 2 1
l =~ T3 | Ru— + 3 Zilas — 1 R—21x1d1 — L3
Iw

g 2R —32) 2w (1
d2i 3R%w 3\/7
R%W 3 R%W

21 2z;
15, = =Dy — ——=(Luss — PPLs
a =3 D=7 \/7( 15 1d6)

2 2z;
3 =Dy — —(Lyq7 — I,
asi =3 D4 3\/7(,1d7 1d6)

qs5 __ 495 q5
td6i - tdli + tdZi

t‘[ 5

w
sli — W]xlsl
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1
15 (Ly1a7 — Uyide)

521_\/7
f“ - Wz;

s3i \/? [xlsz

2w? 1 1
1 = Vi {Z,-zlmm - l(R% L1 — led3>:|
SR Y
s5i T R%w \/721 R%w

qs __ 495 qs
i = tS3l — s

1
Lyar — — (Lya2 — lz]xld3):|
w

£5/2 1
t;/75i = _R—4W (2Zilxls3 - 71):154 - lZizIxISS)

Iw

1 [P(P—w)z Iw? 1522
t;hl B |:—l sisy + g Last = g Luss — Zi(zilxlsé - [xls3):|
’ \/7 R‘l‘w R‘l‘w R?W
where
VR + 1222 R2
Laar = / ”‘;/j " dy =202, (0.25, ~0.5,1.25, — g)
2R X2+ P27 217/2 R2 P2
Ix/cu:/ M (1 25,-0.5,1,2.25, — S _2>
0 X +Zi 521 l Zi
2]3/2 RZ
A1d3—/ = 1.25,0.5,2.25, — ’W
R?sz + lzz 52,- 2
1 2\/_ 12
Lygs = | ———=dx="",F(0.2505,1.25 -
xId4 /0 x]/z\/m z; ( le )
R2 X2 + 1222 2[5/2 7 R2 12
Ix - bw ! = 0. 5 5.1 Iw L
@ /o x2+z7 dx 3z, ( 7 by T2 Z,2>

2/1/2 R2
Lyg6 = / = ! (0 75,0.5,1.75, — ’“)
R;sz T YT z

2]3/2 12
1(0.75,0.5, 1.75, — 2)
V4

xld7 - / /—x2 T2 321‘

li 5/2 2]5/2 RZ 12
L :/ a dx = = F1<1.75,0.5,1,2.75,—%,——2>
o (2 +22)\/RX2+ 12 7z; g
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! 3/2 213/2 R2 P2
lesz=/ al dx == <125 0.5,1,2.25, — 12‘”,_2>
o (2 +2)/Rx+ Pz} 3z; z g

!
1 .
Ly = / —7; dx = divergent at x = 0
o XY

VR2 X2+ 222
Ly = / Y

—ar dx = divergent at x =0

!

1 .

L = / dx = divergent at x =0
0 X32\/R2 x2 + 22

I
1
L = ————dx =divergent at x =0
e /ox3/2\/x2+z,2 £

The function ,F(a, b;c;z) is the hypergeometric function, and it is a solution of the following hypergeo-
metric differential equation (Exton, 1976, 1978; Seaborn, 1991):

z(1=z)y"+[c—(a+b+1)z]y) —aby =0 (47)
However, this function has the series expansion as

WFi(a,b;c;z) = 2 (gé’;k)kzk (48)

Regarding as the function Fi (a; b1, bs; ¢; x, y) is the Appell hypergeometric function of two variables (Exton,
1976, 1978). This function appears for example in integrating cubic polynomials to arbitrary powers, and
can also be expressed as the following series expansion:

o0 o0 b
Fi(a;by,bycix,y) = > ”W'—Z)"xmy” (49)

|
m=0 n=0 m!n! c m4n

2.4. Integral functions for square-root-varying triangular loads distributed in the y direction

40, = switch x, [ withy, win 3, (50)
45, = switch x, [ with y, win 73}, (51)
45, = switch x, [ with y, win 73}, (52)
4% =switch x, [ withy, win ¢ (53)
3¢ = switch x, [ with y, win 7}, (54)
tde. = switch x, [ withy, win 7%, (55)
th = switch x, [ with y, win %, (56)
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% = switch x, [ withy, win %, (57)
% =switch x, [ withy, win% (58)
% = switch x, [ with y, win %, (59)
ts = i%v - ﬁ < R%del - ZlincB) (60)
g = 135 — 155 (61)
% =switch x, [ withy, win & (62)
. = switch x, [ with y, win %, (63)

where /,,,q1 and 1,43 are the same as /,;q; and 1,43, except for the x, and / should be exchanged, respectively,
with y, and w.

The present solutions can be extended to determine the displacements and stresses of a general non-
linearly varying triangular shaped load at any point by superposition. Also, they can be automated to
calculate the displacements and stresses in a transversely isotropic half-space subjected to an arbitrarily
shaped buried load by triangulating the area and summing up the contribution of each generated triangular
sub-area. The detailed procedures can be referred to Wang and Liao (2001).

3. Illustrative examples

This section presents a parametric study to confirm the derived solutions and elucidate the effect of the
rock anisotropy, the dimensions of loaded region, and loading types on the displacement and stress. Based
on Egs. (5)—(18), (19)—(32), (33)-(46), (50)—(63) in this work, and the point load solutions in Wang and
Liao (2001), the displacements and stresses in a transversely isotropic half-space induced by quadratic-
varying triangular loads distributed in the x direction, quadratic-varying triangular loads distributed in the
y direction, square-root-varying triangular loads distributed in the x direction, and square-root-varying
triangular loads distributed in the y direction, respectively, can be calculated.

A FORTRAN program based on the present solutions was written for computing the displacements and
stresses at/below the point C (Figs. 1 and 2) in a transversely isotropic half-space subjected to the non-
linearly varying loads acting on a right-angled triangular area. In this study, since the vertical surface
displacement and vertical normal stress are of great significance in practical problems; hence, two examples
illustrate to show the effect of rock anisotropy, and the dimensions of loaded region on them are depicted in
Figs. 3 and 4, respectively. Besides, in order to investigate the effect of loading types, the calculated results
by Wang and Liao (2001) for a vertical uniform triangular load, a linearly varying triangular load in the x
direction, and a linearly varying triangular load in the y direction, on the displacement and stress are also
compared in Figs. 5 and 6, respectively. Several types of isotropic and transversely isotropic rocks are
considered as foundation materials. Their elastic properties are listed in Table 2 with E/E’" and G/G’
ranging between | and 3, and v/v’ varying between 0.75-1.5. The values adopted in Table 2 of £ and v are
50 GPa and 0.25, respectively. The chosen domains of anisotropy variation are based on the suggestions of
Gerrard (1975) and Amadei et al. (1987). The loads act on its horizontal surface (4 = 0) of a transversely
isotropic half-space for both examples. The degree of material anisotropy including the ratios E/E’, v/v/,
and G/G', is accounted for investigating its effect on the displacement and stress.
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Fig. 3. Effect of rock anisotropy on the vertical surface displacement at point C for all rocks: (a) a vertical quadratic-varying triangular
load in the x direction (gp.); (b) a vertical quadratic-varying triangular load in the y direction (¢z.); (c) a vertical square-root-varying
triangular load in the x direction (¢p,) and (d) a vertical square-root-varying triangular load in the y direction (gg.).

First, the normalized vertical surface displacement (19 /(1 * qp.), u'“) /(1 * qg.), u'9=) /(1 * qp.),
u'%:) /(1 % gpg.)) for Rocks 1-7 (Table 2) at the surface point C resulted from a vertical quadratic-varying
triangular load in the x direction, a vertical quadratic-varying triangular load in the y direction, a vertical
square-root-varying triangular load in the x direction, and a vertical square-root-varying triangular load in
the y direction, acting on the free surface vs. the non-dimensional ratio of the loaded side (w/!) are given in
Figs. 3(a)—(d), respectively. Knowing the loading types and magnitudes, the rock types, and the dimensions
of loaded area, the vertical surface displacement at point C can be estimated from these figures. Figs. 3(a)—
(d) indicate that the vertical surface displacement increases with the increase of E/E’ with v/v' = G/G' =1
(Rocks 1, 2, and 3), v/v' with E/E' = G/G' = 1 (Rock 1, and 5), and G/G’ with E/E' =v/v' = 1 (Rocks 1, 6
and 7). Restated, the magnitude of induced vertical surface displacement by each loading case follows the
order: Rock 3>Rock 7>Rock 2>Rock 6>Rock 5>Rock 1 (isotropy)>Rock 4. Particularly, the in-
creases of the ratios of £/E’ and G/G’ do have a great effect on the displacement. It reflects that the vertical
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Fig. 4. Effect of rock anisotropy on the vertical normal stress below point C for all rocks: (a) a vertical quadratic-varying triangular
load in the x direction (¢gp,) for n = 1; (b) a vertical quadratic-varying triangular load in the x direction (gp,) for n = 10; (c) a vertical
quadratic-varying triangular load in the y direction (gg,) for n = 1; (d) a vertical quadratic-varying triangular load in the y direction
(qg-) for n = 10; (e) a vertical square-root-varying triangular load in the x direction (gp,) for n = 1; (f) a vertical square-root-varying
triangular load in the x direction (gp,) for n = 10; (g) a vertical square-root-varying triangular load in the y direction (gg,) for n = 1 and
(h) a vertical square-root-varying triangular load in the y direction (gg.) for n = 10.

surface displacement increases with the increase of deformability in the direction parallel to the applied
load. It also can be observed that if the load intensity for the vertical quadratic-varying triangular load in
the y direction is not large enough, the influence on the induced vertical surface displacement is little
comparing with other cases.

Secondly, the non-dimensional vertical normal stress (2% /qp,, ') /qp., ¢'9) /qp., ¢'9) /qp.) for
Rocks 1-7 below the point C (at depth z from the surface) induced by present four loading types acting on
the boundary surface vs. the non-dimensional factor m (m = 1/z), for n = 1,10 (n = w/z), are reported in
Figs. 4(a)-(h). In these figures, the non-dimensional factor n(= w/z) is adopted for investigating the
influence of the dimensions of loaded region on the vertical normal stress. Figs. 4(a) and (b) indicate the
stresses at point C with depth z from the surface induced by a vertical quadratic-varying triangular load in
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Fig. 4 (continued)

the x direction for n = 1, 10, respectively. The magnitude of non-dimensional vertical normal stress de-
creases with the increase of E/E’ (Rocks 1, 2, and 3), and increases with the increase of G/G’ (Rocks 1, 6,
and 7), but is little affected by the ratio of v/v’ (Rocks 1, 4, and 5). That is, the computed value obeys the
order: Rock 7>Rock 6>Rock 1 (isotropy) = Rock 4=Rock 5>Rock 2>Rock 3. However, it should be
noted that the trend of this result would be reversed with the increase of the non-dimensional factor m. It
means that for a given value of n (=1, 10), the non-dimensional factor m does play a great influence on the
induced vertical normal stress. Figs. 4(c) and (d) plot the stress due to a vertical quadratic-varying trian-
gular load in the y direction for n = 1, 10, respectively. The trend of Fig. 4(c) is similar to that of Figs. 4(a)
and (b); nevertheless, in Fig. 4(d), the magnitude of induced vertical normal stress follows the order: Rock
3>Rock 2>Rock 1 (isotropy)=Rock 4=Rock 5>Rock 6>Rock 7. Figs. 4(e) and (f) reveal the stress
subjected to a vertical square-root-varying triangular load in the x direction for n = 1, 10, respectively.
Also, the calculated trends of Figs. 4(e) and (f) are similar to those of Figs. 4(a) and (b), respectively. Figs.
4(g) and (h) display the stress caused by a vertical square-root-varying triangular load in the y direction for
n = 1,10, respectively. In Fig. 4(g), the vertical normal stress decreases with the increase of E/E’ and G/G,
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Fig. 5. Effect of loading types on the vertical surface displacement for Rock 6: (a) a vertical uniform triangular load (g¢;), a vertical
linearly varying, quadratic-varying, and square-root-varying triangular load in the x direction (gp,) and (b) a vertical uniform trian-
gular load (gc.), a vertical linearly varying, quadratic-varying, and square-root-varying triangular load in the y direction (g:).

and still little affected by the ratio of v/v’ (Rock 1=Rock 4=Rock 5> Rock 6 >Rock 7> Rock 2> Rock 3).
It also can be found that the trend of Fig. 4(h) (Rock 3>Rock 2>Rock 1= Rock 4=Rock 5>Rock
6> Rock 7) is considerably different from that of Fig. 4(g). From Figs. 4(a)-(h), if the load intensity in the
case of n = 10 for the quadratic-varying triangular load in the y direction is not large enough, the effect on
the induced vertical normal stress is also little comparing with other cases. The results of these two figures
(Figs. 3 and 4) show the displacement and stress induced by the present loading types strongly depend on
the type and degree of rock anisotropy, and the dimensions of loaded area.

Finally, Figs. 5 and 6 illustrate the effect of different loading types on the displacement and stress for
Rock 6 (transversely isotropy, E/E' =v/v' = 1.0, G/G" = 2.0), respectively. The right-angled triangular
loads include seven different types, respectively, a uniform load (Wang and Liao, 2001), a linearly varying
load in the x direction (Wang and Liao, 2001), a linearly varying load in the y direction (Wang and Liao,
2001), and the proposed four loading cases in this paper. Fig. 5(a) presents the normalized vertical surface
displacement for Rock 6 at the surface point C ((/“)/(1 * q¢.), u! @) /(1 x gp,), w')/(1 * qp.),
u'%) /(1 % gp.)), induced by a uniform load (gc.), a linearly varying, a quadratic-varying, and a square-
root-varying distributed load in the x direction (¢p,) vs. w/l. Similarly, Fig. 5(b) depicts the induced
displacement ((u/“) /(1 * gc.), u'=) /(1 % qp,), u'%) /(1 * qp.), u'%) /(1 * qp,)) by various loads dis-
tributed in the y direction. Fig. 5(a) shows that the order induced displacement follows: the uniform
load > the square-root-varying load in the x direction > the quadratic-varying load in the x direction =the
linearly varying load in the x direction. However, the trend of Fig. 5(b) differs a little from that of Fig. 5(a).
Figs. 6(a)—(b), and Figs. 6(c)—(d) delineate the non-dimensional vertical normal stress for Rock 6 below the
point C (at depth z from the surface; /%) /q., 6'9%) /qp., "% [ qp., 6"9%) /qp. in Figs. 6(a)—(b), and ') /g,
%) /qp., 6'9%) | qp., 6'9) /g, in Figs. 6(c)~(d)), induced by the same loads as described respectively in Figs.
5(a) and (b), when n = 1, 10. In Figs. 6(a) and (b), the orders induced stress for n = 1, 10 are similar to those
of in Figs. 5(a) and (b), respectively. However, in Figs. 6(c) and (d), especially, the magnitude of induced
stress by square-root-varying loads in the y direction for n = 1, 10 increases markedly even when m > 10.
From Figs. 5 and 6, they are shown that the effect of loading types on the displacement and stress is very
explicit.
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The above examples are presented to elucidate the solutions and clarify how the type and degree of rock
anisotropy, the dimensions of loaded area, and the loading types will influence the displacement and stress
in an isotropy/transversely isotropic medium. Also, the results reveal that the induced displacement and
stress by non-linearly varying loads acting on a right-angled triangle for a transversely isotropic half-space
are easily computed by the present solutions. Hence, in engineering practice, it is no more applicable to
estimate the displacements and stresses by the traditional isotropic solutions, or frequently assuming the
applied loads are uniformly or linearly varying distributed over a triangular region in a transversely iso-

tropic half-space.
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Table 2

Elastic properties for different rocks
Rock type E/E v/v' G/G
Rock 1. Isotropy 1.0 1.0 1.0
Rock 2. Transversely isotropy 2.0 1.0 1.0
Rock 3. Transversely isotropy 3.0 1.0 1.0
Rock 4. Transversely isotropy 1.0 0.75 1.0
Rock 5. Transversely isotropy 1.0 1.5 1.0
Rock 6. Transversely isotropy 1.0 1.0 2.0
Rock 7. Transversely isotropy 1.0 1.0 3.0

E and E’: Young’s moduli in the plane of transverse isotropy and in a direction normal to it, respectively.

v, v': Poisson’s ratios characterizing the lateral strain response in the plane of transverse isotropy to a stress acting parallel or normal
to it, respectively.

G': Shear modulus in planes normal to the plane of transverse isotropy.

4. Conclusions

Integrating the elementary functions of point load solutions yields the solutions for displacements and
stresses in a transversely isotropic half-space subjected to three-dimensional, buried, non-linearly varying
triangular loads. The solutions are limited to planes of transverse isotropy that are parallel to the horizontal
surface of the half-space. The loading types include a quadratic-varying load in the x direction, a quadratic-
varying load in the y direction, a square-root-varying load in the x direction, a square-root-varying load in
the y direction, all acting on a right-angled triangular area. The present solutions are influenced by the
buried depth (h), the type and degree of material anisotropy (E/E’, v/V', G/G’), the dimensions of loaded
area (I, w), and the loading types in a transversely isotropic half-space.

A parametric study of the illustrative examples has yielded the following interesting conclusions:

1. The magnitude of induced vertical surface displacement by each loading case follows the order: Rock
3>Rock 7>Rock 2>Rock 6>Rock 5>Rock 1 (isotropy) > Rock 4.

2. The vertical surface displacement increases with the increase of deformability in the direction parallel to
the applied load; particularly, the increases of the ratios of £/E" and G/G’ do have a great effect on the
displacement.

3. The ratios E/E' (v/v' = G/G' = 1) and G/G (E/E' =v/v' = 1) strongly influence the non-dimensional
vertical normal stress due to each loading case; however, the ratio v/v' (E/E' = G/G' = 1) has little effect
on it.

4. The magnitude of induced vertical normal stress has no unified trend; nevertheless, the results show the
induced stress by each loading case heavily relies on the type and degree of rock anisotropy, and the
dimensions of loaded area.

5. If the load intensity for the quadratic-varying triangular load in the y direction is not large enough, the
influence on the induced vertical surface displacement and vertical normal stress is little comparing with
other cases.

6. The effect of loading types on the displacement and stress is very explicit; especially, the magnitude of
induced stress by square-root-varying loads in the y direction for n = 1, 10 increases markedly even when
the non-dimensional factor m > 10.

Since the presentation of the derived solutions is clear and concise, the computation of induced dis-
placements and stresses by various non-linearly varying loading types, distributed over a right-angled
triangular area in an isotropic/transversely isotropic half-space is fast and correct. These solutions can more
realistically simulate the actual loading circumstances in many areas of engineering practices, and also can
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be extended to calculate the displacements and stresses at any point by superposition for a transversely
isotropic half-space subjected to three-dimensional, buried/surface, non-linearly varying arbitrarily shaped
loads.
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