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Abstract

In many fields of engineering practice, applied loads are not uniformly or linearly varying distributed; hence, they are

more realistically depicted as non-linearly varying distributed. Also, in calculating the displacements/stresses within the

soil/rock when the foundations are relatively deep, it might be advisable to use solutions derived for the case of loads

applied within the elastic medium. In this work, solutions for displacements and stresses in a transversely isotropic half-

space subjected to three-dimensional buried non-linearly varying triangular loaded region are presented. Non-linearly

varying loading types include a quadratic-varying load in the x direction, a quadratic-varying load in the y direction, a

square-root-varying load in the x direction, and a square-root-varying load in the y direction, all distributed over a

right-angled triangle. These solutions are obtained by integrating the point load solutions in a Cartesian co-ordinate

system for a transversely isotropic half-space, and they are limited to the planes of transverse isotropy to be parallel to

its horizontal surface. The present solutions can more realistically simulate the actual loading problem, and also they

are clear, concise, and easy to use. The proposed solutions specify that the type and degree of material anisotropy, the

dimensions of loaded region, and the loading types decisively influence the displacements and stresses in a transversely

isotropic half-space.
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1. Introduction

In most problems of geotechnical engineering dealing with the probable behavior of foundations, the

calculation of the induced displacements and stresses inside the soil/rock by the foundation loads is the first

requisite. In general, the displacements and stresses are approximately estimated by assuming the soil/rock

to behave as a linear elastic, homogeneous, and isotropic continuum. However, better results should be

obtained by considering the anisotropic deformability for many natural soils are deposited by geological
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Nomenclature

E, E0, t, t0, G0 elastic constants of a transversely isotropic medium

h the buried depth

l, w length along x-axis and width along y-axis, respectively
pd1i � pd6i, ps1i � ps8i elementary functions for the displacements and stresses induced by a point load,

respectively

q0j � q6jðj ¼ x; y; zÞ components of the load function

qCj; qDj, qEjðj ¼ x; y; zÞ load components at the three vertices (C;D;E) of a right-angled triangular

region
QCj, QDj, QEjðj ¼ x; y; zÞ total loads at the three vertices (C;D;E) of a right-angled triangular region

tq3d1i � tq3d6i, t
q3
s1i � tq3s8i integral functions for the displacements and stresses induced by quadratic-varying

triangular loads in the x direction, respectively

tq4d1i � tq4d6i, t
q4
s1i � tq4s8i integral functions for the displacements and stresses induced by quadratic-varying

triangular loads in the y direction, respectively

tq5d1i � tq5d6i, t
q5
s1i � tq5s8i integral functions for the displacements and stresses induced by square-root-

varying triangular loads in the x direction, respectively

tq6d1i � tq6d6i, t
q6
s1i � tq6s8i integral functions for the displacements and stresses induced by square-root-

varying triangular loads in the y direction, respectively

½U �tðq3jÞ the displacement components induced by quadratic-varying triangular loads in the x direction
½U �tðq4jÞ the displacement components induced by quadratic-varying triangular loads in the y direction
½U �tðq5jÞ the displacement components induced by square-root-varying triangular loads in the x

direction

½U �tðq6jÞ the displacement components induced by square-root-varying triangular loads in the y
direction

Greeks

½r�tðq3jÞ the stress components induced by quadratic-varying triangular loads in the x direction

½r�tðq4jÞ the stress components induced by quadratic-varying triangular loads in the y direction

½r�tðq5jÞ the stress components induced by square-root-varying triangular loads in the x direction

½r�tðq6jÞ the stress components induced by square-root-varying triangular loads in the y direction

3014 C.-D. Wang et al. / International Journal of Solids and Structures 41 (2004) 3013–3030
sedimentation over a period, or rock masses cut by discontinuities. For example, an anisotropic rock can be
modeled as either an orthotropic or a transversely isotropic material. This work addresses the elastic

loading problem of displacements and stresses for a transversely isotropic half-space.

It is well known that the displacements and stresses in a transversely isotropic half-space subjected to an

arbitrarily shape loaded area can be estimated by dividing the loaded area into several regularly shaped sub-

areas, such as rectangles and triangles. Several loading solutions for computing displacements and stresses,

include an upward linearly varying load, a downward linearly varying load, a uniform load, a concave

parabolic load, and a convex parabolic load on a rectangle have been proposed by Wang and Liao

(2002a,b). Nevertheless, it is recognized that the techniques of computational geometry for triangular mesh
generation is more accurate than anyone else. Also, a right-angled triangle forms the elementary of a

general one by the principle of superposition (Wang and Liao, 2001). The closed-form solutions for dis-

placements and stresses subjected to three-dimensional buried right-angled triangular loads in a trans-

versely isotropic half-space have been presented by Wang and Liao (2001). The loading types in their

solutions include a uniform load, a linearly varying load in the x direction, and a linearly varying load in the
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y direction, respectively. However, one of the fundamental problems in a transversely isotropic half-space,

which hitherto have received little attention, is that of determining the displacement and stress fields due to

loading in the form of non-linear distributions of three-dimensional pressures. Hence, non-linearly varying

loads encountered might be more realistically simulated as quadratic-varying or square-root-varying loads.
To the best of authors� knowledge, no solutions of displacements and stresses for a transversely isotropic

half-space subjected to the above-mentioned triangular loads have been presented. The elastic solutions

derived in this paper include four loading types, respectively, quadratic-varying triangular loads distributed

in the x and y directions, and square-root-varying triangular loads distributed in the x and y directions. The
present solutions can be obtained from directly integrated the point load solutions (Wang and Liao, 2001).

Namely, this work is an extension of Wang and Liao�s solutions (2001) to the three-dimensional buried

non-linearly varying triangular loads on a transversely isotropic half-space. The proposed solutions indi-

cate that the buried depth, the degree and type of material anisotropy, the dimensions of loaded region, and
the loading types affect the displacements and stresses in a transversely isotropic half-space. Two illustrative

examples are given to investigate the effect of rock anisotropy, and the dimensions of loaded region on the

vertical surface displacement and vertical normal stress in the medium acting by non-linearly varying tri-

angular loads on its horizontal surface. Furthermore, in order to elucidate the effect of loading types, the

calculated results by Wang and Liao (2001) for a vertical uniform triangular load, a linearly varying tri-

angular load in the x direction, and a linearly varying triangular load in the y direction, on the displacement

and stress are also compared.
2. Displacement and stress solutions due to various non-linearly varying right-angled triangular loads

In this work, solutions for the induced displacements and stresses in a transversely isotropic half-space

by three-dimensional buried right-angled triangular loads, as depicted in Figs. 1(a) and 2(a) are derived.

The loading types in Fig. 1(a) can be modeled as uniform loads (Fig. 1(b)), quadratic-varying loads dis-

tributed in the x direction (Fig. 1(c)), and quadratic-varying loads distributed in the y direction (Fig. 1(d)).

The solutions for displacements and stresses in the transversely isotropic medium acting by uniform loads
(Fig. 1(b)) have been proposed by Wang and Liao (2001). Similarly, in Fig. 2(a), the loading types also can

be expressed as uniform loads (Fig. 2(b)¼Fig. 1(b)), square-root-varying loads distributed in the x
direction (Fig. 2(c)), and square-root-varying loads distributed in the y direction (Fig. 2(d)). The planes of

transverse isotropy are assumed to be parallel to its boundary surface. Integrations of Wang and Liao�s
solutions (2001), which due to a three-dimensional buried point load (Px, Py , Pz) acting in the interior of a

transversely isotropic half-space, are performed. In the point load case (Wang and Liao, 2001), defining

pd1i � pd6i and ps1i � ps8i as the elementary functions for the displacements and stresses, respectively. Hence,

solutions for displacements and stresses in a transversely isotropic half-space subjected to above-mentioned
triangular loads (Figs. 1(c), (d) and 2(c), (d)), can be integrated from the elementary functions (pd1i � pd6i
and ps1i � ps8i) of the point load solutions. The solutions for induced displacements and stresses at corner C,

by the loading of Figs. 1(c), (d) and 2(c), (d) are presented below.

Figs. 1(a) and 2(a) show a transversely isotropic half-space subjected to three-dimensional buried loads

at the depth of h on a right-angled triangle ( CDE). The loading types can be modeled as a load function

qðx; yÞ. However, qðx; yÞ can be composed of a uniform (q0j, Fig. 1(b)¼Fig. 2(b)), linearly varying loads in

the x ðq1jÞ and y (q2j) directions (Wang and Liao, 2001), quadratic-varying loads in the x (q3j, Fig. 1(c)) and
y directions (q4j, Fig. 1(d)), and square-root-varying loads in the x (q5j, Fig. 2(c)) and y directions (q6j, Fig.
2(d)), respectively, as follows:
qðx; yÞ ¼ q0j þ q1j � x� �
þ q2j � y� �

þ q3j � x� �2

þ q4j � y� �2

þ q5j �
ffiffiffi
x

r
þ q6j �

ffiffiffiffi
y

r
ð1Þ
l w l w l w
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Fig. 1. Three-dimensional buried quadratic-varying loads on a right-angled triangle region: (a) uniform and quadratic-varying tri-

angular loads in the x, y directions; (b) uniform loads; (c) quadratic-varying triangular loads in the x direction and (d) quadratic-

varying triangular loads in the y direction.
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where q0j � q6j (j ¼ x; y; z) are constants. The solutions for q0j (three-dimensional buried uniform loads), q1j
(three-dimensional buried linearly varying loads in the x direction), and q2j (three-dimensional buried
linearly varying loads in the y direction) can be found in Wang and Liao (2001). The other solutions for

displacements and stresses subjected to q3j (Fig. 1(c)), q4j (Fig. 1(d)), q5j (Fig. 2(c)), and q6j (Fig. 2(d)) are
proposed in this paper.

Utilizing the elementary functions pd1i � pd6i, ps1i � ps8i, and Eq. (1), the solutions for displacements and

stresses at point C, induced by three-dimensional buried q3j � q6j loads can be derived. Replacing the

concentrated force by q3jðxlÞ
2
dy dx, q4jðywÞ

2
dy dx, q5j

ffiffi
x
l

p
dy dx, and q6j

ffiffiffiy
w

p
dy dx in the point load solutions

(Wang and Liao, 2001), respectively, the solutions for displacements and stresses can be obtained by

integrating y from 0 to ðw=lÞ � x, and x from 0 to l, as
U

r

" #t

¼ q3j �
U

r

" #tðq3jÞ

þ q4j �
U

r

" #tðq4jÞ

þ q5j �
U

r

" #tðq5jÞ

þ q6j �
U

r

" #tðq6jÞ

¼ q3j �
Z l

0

Z ðw=lÞ � x

0

U

r

" #p

x
l

� �2

dy dxþ q4j �
Z l

0

Z ðw=lÞ � x

0

U

r

" #p

y
w

� �2

dy dx
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Fig. 2. Three-dimensional buried square-root-varying loads on a right-angled triangle region: (a) uniform and square-root-varying

triangular loads in the x, y directions; (b) uniform loads; (c) square-root-varying triangular loads in the x direction and (d) square-root-

varying triangular loads in the y direction.
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where the displacement components ½U � ¼ ½ux; uy ; uz�T, the stress components ½r� ¼ ½rxx; ryy ; rzz; sxy ; syz; szx�T
(superscript �T� denotes that the transpose matrix); the superscripts �t� and �p� express the displacement and

stress components that are induced by a right-angled triangular load and a point load, respectively; the
superscripts tðq3jÞ, tðq4jÞ, tðq5jÞ, and tðq6jÞ express the displacement and stress components that are induced

by quadratic-varying loads in the x direction, quadratic-varying loads in the y direction, square-root-

varying loads in the x direction, and square-root-varying loads in the y direction, on a right-angled tri-

angular region, respectively.

In Figs. 1(a) and 2(a), the relationship between the total loads (QCj, QDj, QEj) (j ¼ x; y; z) and the load

components (qCj, qDj, qEj) (j ¼ x; y; z) at the three vertices ðC;D;EÞ can be expressed as follows:
QCj

QDj

QEj

2
4

3
5 ¼

1 0 0

1 1 0

1 0 1

2
4

3
5 qCj

qDj
qEj

2
4

3
5 ð3Þ
Knowing the total loads or the load components at the vertices, the coefficients of load function (q0j,
q3j � q6j) can be determined by using Lagrangian interpolation technique (Murti and Wang, 1991). For
example, the relationship between (q0j, q3j, q4j), (q0j, q5j, q6j), (QCj, QDj, QEj) and (qCj, qDj, qEj) are given as

follows:
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q0j
q3j
q4j

2
4

3
5 ¼

q0j
q5j
q6j

2
4

3
5 ¼ 1

D

x2y3 � x3y2 x3y1 � x1y3 x1y2 � x2y1
y2 � y3 y3 � y1 y1 � y2
x3 � x2 x1 � x3 x2 � x1

2
4

3
5 QCj

QDj

QEj

2
4

3
5

¼ 1

D

x1ðy2 � y3Þ � x2ðy1 � y3Þ þ x3ðy1 � y2Þ x3y1 � x1y3 x1y2 � x2y1
0 y3 � y1 y1 � y2
0 x1 � x3 x2 � x1

2
4

3
5 qCj

qDj
qEj

2
4

3
5 ð4Þ
where D ¼
1 x1 y1
1 x2 y2
1 x3 y3

������
������.

However, as shown in Figs. 1(a)–(d) and 2(a)–(d), the co-ordinates of the three vertices (C;D;E) are:
Cðx1; y1Þ ¼ ð0; 0Þ, Dðx2; y2Þ ¼ ðl; 0Þ, Eðx3; y3Þ ¼ ðl;wÞ. Then, utilizing Eq. (4), the coefficient of load function

can be obtained. Table 1 lists the relationship between (q0j, q3j, q4j), (q0j, q5j, q6j) and (qCj, qDj, qEj), as shown
in Figs. 1(a)–(d) and 2(a)–(d).

The explicit solutions of displacements and stresses for the proposed four loading types can be

regrouped as the forms of point load solutions (Wang and Liao, 2001). Hence, only the displacement

and stress integral functions for quadratic-varying triangular loads distributed in the x and y direc-

tions, and square-root-varying triangular loads distributed in the x and y directions, respectively, are

presented.
2.1. Integral functions for quadratic-varying triangular loads distributed in the x direction
tq3d1i ¼
lwzi
2R2

lw

þ w½ðl2 þ R2
lwÞz3i � RlwiðR2

lw � R2
li þ l2z2i Þ�

3lR4
lw

þ z3i
3l2

D1 þ
l
3
D2 ð5Þ

tq3d2i ¼ � lw½3z3i þ ð3R2
lwzi � 2R3

lwiÞ�
6R4

lw

ð6Þ

tq3d3i ¼
R3
li

3l2
� w2zi
2R2

lw

� w2ðl2 þ R2
lwÞz3i þ l4R3

lwi

3l2R4
lw

ð7Þ

tq3d4i ¼ �wziRlwi

6R2
lw

þ l
3
D1 �

z3i
3l2

D2 þ
wðl2 þ 2R2

lwÞz3i
6l2R3

lw

D3 ð8Þ

tq3d5i ¼ � ziRli

6l
þ lziRlwi

6R2
lw

þ l
3
D4 þ

z3i
6l2

D5 �
lz3i
6R3

lw

D3 ð9Þ
1
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e Figs. 1(a) and 2(a) Figs. 1(b) and 2(b) Figs. 1(c) and 2(c) Figs. 1(d) and 2(d)
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tq3d6i ¼ tq3d1i þ tq3d2i ð10Þ

tq3s1i ¼
wRlwi

2R2
lw

� wðl2 þ 2R2
lwÞz2i

2l2R3
lw

D3 þ
zi
l

� �2

D2 ð11Þ

tq3s2i ¼
Rli

2l
� lRlwi

2R2
lw

� 1

2

zi
l

� �2

D5 þ
lz2i
2R3

lw

D3 ð12Þ

tq3s3i ¼
wzi

lðRlwi þ ziÞ
� zi

l

� �2

D1 ð13Þ

tq3s4i ¼
w2

2R2
lw

þ l2zi
R2
lwðRlwi þ ziÞ

� zi
l2
ðRli � ziÞ ð14Þ

tq3s5i ¼ � lw
2R2

lw

þ wðl2 þ R2
lwÞzi

lR2
lwðRlwi þ ziÞ

� zi
l

� �2

D1 ð15Þ

tq3s6i ¼ tq3s3i � tq3s5i ð16Þ

tq3s7i ¼
l2wðRlwi � 4ziÞ

2R4
lw

þ 3l2wz2i
2R5

lw

D3 ð17Þ

tq3s8i ¼
w2½2ð2l2 þ R2

lwÞzi � l2Rlwi�
2lR4

lw

� zi
l

� �2

D5 þ
lð2l2 � w2Þz2i

2R5
lw

D3 ð18Þ
where Rli ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ z2i

p
, Rlw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ w2

p
, Rlwi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ w2 þ z2i

p
, D1 ¼ tan�1 w

l � tan�1 wzi
lRlwi

, D2 ¼ ln j Rlwiþw
Rli

j,
D3 ¼ ln j RlwþRlwi

zi
j, D4 ¼ ln j Rlwiþzi

Rliþzi
j, D5 ¼ ln j Rliþl

zi
j.
2.2. Integral functions for quadratic-varying triangular loads distributed in the y direction
tq4d1i ¼ � lziðl2 þ R2
lwÞ

2wR2
lw

þ lf2w2z3i þ Rlwi½R2
lwð2l2 þ R2

lwÞ � 2w2z2i �g
6wR4

lw

þ l2zi
w2

D1 �
lðl2 � z2i Þ

2w2
D2 ð19Þ

tq4d2i ¼
lziðl2 þ R2

lwÞ
2wR2

lw

� lfz3i ðR2
lw þ w2Þ þ Rlwi½l2R2

lw � ðR2
lw þ w2Þz2i �g

3wR4
lw

� zið3l2 � z2i Þ
3w2

D1

þ lðl2 � 3z2i Þ
3w2

D2 ð20Þ

tq4d3i ¼ �ð2l2 � z2i ÞRli

3w2
þ l2zi
2R2

lw

� w4z3i � l2Rlwi½R2
lwðl2 þ R2

lwÞ � z2i ðR2
lw þ w2Þ�

3w2R4
lw

� l2zi
w2

D4 ð21Þ

tq4d4i ¼
l2

3w
þ l2ziRlwi

6wR2
lw

� l3

3w2
D1 �

ð2l2 þ R2
liÞzi

6w2
D2 þ

wz3i
6R3

lw

D3 ð22Þ

tq4d5i ¼
l
6
þ 2lziRli

3w2
� lðl2 þ 3R2

lwÞziRlwi

6w2R2
lw

� l3

3w2
D4 þ

z3i
3w2

D5 �
lð2R2

lw þ w2Þz3i
6w2R3

lw

D3 ð23Þ
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tq4d6i ¼ tq4d1i þ tq4d2i ð24Þ

tq4s1i ¼ � l2Rlwi

2wR2
lw

þ ðl2 � z2i Þ
2w2

D2 �
wz2i
2R3

lw

D3 ð25Þ

tq4s2i ¼ � l
w2

Rli þ
lðl2 þ R2

lwÞRlwi

2w2R2
lw

� zi
w

� �2

D5 þ
lð2R2

lw þ w2Þz2i
2w2R3

lw

D3 ð26Þ

tq4s3i ¼ � lzi
wðRlwi þ ziÞ

� zi
w2

ðziD1 � lD2Þ ð27Þ

tq4s4i ¼ � zi
w2

Rli �
l2

2R2
lw

þ zi
w2R4

lw

½w4zi þ l2ðR2
lw þ w2ÞRlwi� þ

l
w

� �2

D4 ð28Þ

tq4s5i ¼
l
2w

þ l3

2wR2
lw

þ lwzi
R2
lwðRlwi þ ziÞ

� l
w2

ðlD1 þ ziD2Þ ð29Þ

tq4s6i ¼ tq4s3i � tq4s5i ð30Þ

tq4s7i ¼ switch x; l with y; w in tq3s8i ð31Þ

tq4s8i ¼ switch x; l with y; w in tq3s7i ð32Þ
2.3. Integral functions for square-root-varying triangular loads distributed in the x direction
tq5dli ¼
21wzi
R2
lw

� 2lwRlwi

3R2
lw

þ 2l
3
D2 �

2

3
ffiffi
l

p w
R2
lw

Ixld1

�
� 1

w
Ixld2 þ

l2

w
Ixld3

�
ð33Þ

tq5d2i ¼
2lwðRlwi � 3ziÞ

3R2
lw

þ 2w

3
ffiffi
l

p 1

R2
lw

Ixld1

�
� Ixld3

�
ð34Þ

t
q
5

d3i ¼ � 2w2zi
R2
lw

þ 2

3
Rli

�
� l2Rlwi

R2
lw

�
þ 2

3
ffiffi
l

p z2i Ixld4

�
� l

1

R2
lw

Ixld1

�
� Ixld3

��
ð35Þ

tq5d4i ¼
2l
3
D1 �

2zi
3w

ffiffi
l

p ðIxld5 � l2Ixld6Þ ð36Þ

tq5d5i ¼
2

3
D4 �

2zi
3

ffiffi
l

p ðIxld7 � lIxld6Þ ð37Þ

tq5d6i ¼ tq5d1i þ tq5d2i ð38Þ

tq5s1i ¼
wffiffi
l

p Ixls1 ð39Þ
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tq5s2i ¼
1ffiffi
l

p ðIxld7 � lIxld6Þ ð40Þ

tq5s3i ¼
wziffiffi
l

p Ixls2 ð41Þ

tq5s4i ¼
2w2

R2
lw

� 1ffiffi
l

p
zi

z2i Ixld4

�
� l

1

R2
lw

Ixld1

�
� Ixld3

��
ð42Þ

tq5s5i ¼ � 2lw
R2
lw

þ 1ffiffi
l

p
zi

w
R2
lw

Ixld1

�
� 1

w
ðIxld2 � l2Ixld3Þ

�
ð43Þ

tq5s6i ¼ tq5s3i � tq5s5i ð44Þ

tq5s7i ¼ � ‘5=2w
R4
lw

2ziIxls3

�
� 1

l
Ixls4 � lz2i Ixls5

�
ð45Þ

tq5s8i ¼ � 1ffiffi
l

p l2ðl2 � w2Þzi
R4
lw

Ixls3

�
þ lw2

R4
lw

Ixls4 �
l5z2

R4
lw

Ixls5 � ziðziIxls6 � Ixls3Þ
�

ð46Þ
where
Ixld1 ¼
Z l

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
lwx2 þ l2z2i

p
x1=2

dx ¼ 2l3=2zi2F1 0:25;

�
� 0:5; 1:25;� R2

lw

z2i

�

Ixld2 ¼
Z l

0

x3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
lwx2 þ l2z2i

p
x2 þ z2i

dx ¼ 2l7=2

5zi
F1 1:25;

�
� 0:5; 1; 2:25;� R2

lw

z2i
;� l2

z2i

�

Ixld3 ¼
Z l

0

x3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
lwx2 þ l2z2i

p dx ¼ 2l3=2

5zi
2F1 1:25; 0:5; 2:25;

�
� R2

lw

z2i

�

Ixld4 ¼
Z l

0

1

x1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2i

p dx ¼ 2
ffiffi
l

p

zi
2F1 0:25; 0:5; 1:25;

�
� l2

z2i

�

Ixld5 ¼
Z l

0

x1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
lwx2 þ l2z2i

p
x2 þ z2i

dx ¼ 2l5=2

3zi
F1 0:75;

�
� 0:5; 1;

7

4
;� R2

lw

z2i
;� l2

z2i

�

Ixld6 ¼
Z l

0

x1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
lwx2 þ l2z2i

p dx ¼ 2l1=2

3zi
2F1 0:75; 0:5; 1:75;

�
� R2

lw

z2i

�

Ixld7 ¼
Z l

0

x1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2i

p dx ¼ 2l3=2

3zi
2F1 0:75; 0:5; 1:75;

�
� l2

z2i

�

Ixls1 ¼
Z l

0

x5=2

ðx2 þ z2i Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
lwx2 þ l2z2i

p dx ¼ 2l5=2

7z2i
F1 1:75; 0:5; 1; 2:75;

�
� R2

lw

z2i
;� l2

z2i

�
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Ixls2 ¼
Z l

0

x3=2

ðx2 þ z2i Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
lwx2 þ l2z2i

p dx ¼ 2l3=2

5z3i
F1 1:25; 0:5; 1; 2:25;

�
� R2

lw

z2i
;� l2

z2i

�

Ixls3 ¼
Z l

0

1

x3=2
dx ¼ divergent at x ¼ 0

Ixls4 ¼
Z l

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
lwx2 þ l2z2i

p
x3=2

dx ¼ divergent at x ¼ 0

Ixls5 ¼
Z l

0

1

x3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
lwx2 þ l2z2i

p dx ¼ divergent at x ¼ 0

Ixls6 ¼
Z l

0

1

x3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2i

p dx ¼ divergent at x ¼ 0
The function 2F1ða; b; c; zÞ is the hypergeometric function, and it is a solution of the following hypergeo-

metric differential equation (Exton, 1976, 1978; Seaborn, 1991):
zð1� zÞy00 þ ½c� ðaþ bþ 1Þz�y0 � aby ¼ 0 ð47Þ
However, this function has the series expansion as
2F1ða; b; c; zÞ ¼
X1
k¼0

ðaÞkðbÞk
k!ðcÞk

zk ð48Þ
Regarding as the function F1ða; b1; b2; c; x; yÞ is the Appell hypergeometric function of two variables (Exton,
1976, 1978). This function appears for example in integrating cubic polynomials to arbitrary powers, and

can also be expressed as the following series expansion:
F1ða; b1; b2; c; x; yÞ ¼
X1
m¼0

X1
n¼0

ðaÞmþnðb1Þmðb2Þn
m!n!ðcÞmþn

xmyn ð49Þ
2.4. Integral functions for square-root-varying triangular loads distributed in the y direction
tq6d1i ¼ switch x; l with y; w in tq5d2i ð50Þ

tq6d2i ¼ switch x; l with y; w in tq5d1i ð51Þ

tq6d3i ¼ switch x; l with y; w in tq5d3i ð52Þ

tq6d4i ¼ switch x; l with y; w in tq5d5i ð53Þ

tq6d5i ¼ switch x; l with y; w in tq5d4i ð54Þ

tq6d6i ¼ switch x; l with y; w in tq5d6i ð55Þ

tq6s1i ¼ switch x; l with y; w in tq5s2i ð56Þ
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tq6s2i ¼ switch x; l with y; w in tq5s1i ð57Þ

tq6s3i ¼ switch x; l with y; w in tq5s3i ð58Þ

tq6s4i ¼ switch x; l with y; w in tq5s4i ð59Þ

tq6s5i ¼
2lw
R2
lw

� lffiffiffiffi
w

p
zi

1

R2
lw

Iywd1

�
� 1

zi
Iywd3

�
ð60Þ

tq6s6i ¼ tq6s3i � tq6s5i ð61Þ

tq6s7i ¼ switch x; l with y; w in tq5s8i ð62Þ

tq6s8i ¼ switch x; l with y; w in tq5s7i ð63Þ
where Iywd1 and Iywd3 are the same as Ixld1 and Ixld3, except for the x, and l should be exchanged, respectively,

with y, and w.
The present solutions can be extended to determine the displacements and stresses of a general non-

linearly varying triangular shaped load at any point by superposition. Also, they can be automated to

calculate the displacements and stresses in a transversely isotropic half-space subjected to an arbitrarily

shaped buried load by triangulating the area and summing up the contribution of each generated triangular
sub-area. The detailed procedures can be referred to Wang and Liao (2001).
3. Illustrative examples

This section presents a parametric study to confirm the derived solutions and elucidate the effect of the

rock anisotropy, the dimensions of loaded region, and loading types on the displacement and stress. Based

on Eqs. (5)–(18), (19)–(32), (33)–(46), (50)–(63) in this work, and the point load solutions in Wang and

Liao (2001), the displacements and stresses in a transversely isotropic half-space induced by quadratic-
varying triangular loads distributed in the x direction, quadratic-varying triangular loads distributed in the

y direction, square-root-varying triangular loads distributed in the x direction, and square-root-varying

triangular loads distributed in the y direction, respectively, can be calculated.

A FORTRAN program based on the present solutions was written for computing the displacements and

stresses at/below the point C (Figs. 1 and 2) in a transversely isotropic half-space subjected to the non-

linearly varying loads acting on a right-angled triangular area. In this study, since the vertical surface

displacement and vertical normal stress are of great significance in practical problems; hence, two examples

illustrate to show the effect of rock anisotropy, and the dimensions of loaded region on them are depicted in
Figs. 3 and 4, respectively. Besides, in order to investigate the effect of loading types, the calculated results

by Wang and Liao (2001) for a vertical uniform triangular load, a linearly varying triangular load in the x
direction, and a linearly varying triangular load in the y direction, on the displacement and stress are also

compared in Figs. 5 and 6, respectively. Several types of isotropic and transversely isotropic rocks are

considered as foundation materials. Their elastic properties are listed in Table 2 with E=E0 and G=G0

ranging between 1 and 3, and t=t0 varying between 0.75–1.5. The values adopted in Table 2 of E and t are
50 GPa and 0.25, respectively. The chosen domains of anisotropy variation are based on the suggestions of

Gerrard (1975) and Amadei et al. (1987). The loads act on its horizontal surface (h ¼ 0) of a transversely
isotropic half-space for both examples. The degree of material anisotropy including the ratios E=E0, t=t0,
and G=G0, is accounted for investigating its effect on the displacement and stress.
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Fig. 3. Effect of rock anisotropy on the vertical surface displacement at point C for all rocks: (a) a vertical quadratic-varying triangular

load in the x direction (qDz); (b) a vertical quadratic-varying triangular load in the y direction (qEz); (c) a vertical square-root-varying

triangular load in the x direction (qDz) and (d) a vertical square-root-varying triangular load in the y direction (qEz).
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First, the normalized vertical surface displacement ðutðq3zÞz =ð1 � qDzÞ, utðq4zÞz =ð1 � qEzÞ, utðq5zÞz =ð1 � qDzÞ,
utðq6zÞz =ð1 � qEzÞÞ for Rocks 1–7 (Table 2) at the surface point C resulted from a vertical quadratic-varying

triangular load in the x direction, a vertical quadratic-varying triangular load in the y direction, a vertical

square-root-varying triangular load in the x direction, and a vertical square-root-varying triangular load in

the y direction, acting on the free surface vs. the non-dimensional ratio of the loaded side (w=l) are given in

Figs. 3(a)–(d), respectively. Knowing the loading types and magnitudes, the rock types, and the dimensions
of loaded area, the vertical surface displacement at point C can be estimated from these figures. Figs. 3(a)–

(d) indicate that the vertical surface displacement increases with the increase of E=E0 with t=t0 ¼ G=G0 ¼ 1

(Rocks 1, 2, and 3), t=t0 with E=E0 ¼ G=G0 ¼ 1 (Rock 1, and 5), and G=G0 with E=E0 ¼ t=t0 ¼ 1 (Rocks 1, 6

and 7). Restated, the magnitude of induced vertical surface displacement by each loading case follows the

order: Rock 3>Rock 7>Rock 2>Rock 6>Rock 5>Rock 1 (isotropy) >Rock 4. Particularly, the in-

creases of the ratios of E=E0 and G=G0 do have a great effect on the displacement. It reflects that the vertical
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Fig. 4. Effect of rock anisotropy on the vertical normal stress below point C for all rocks: (a) a vertical quadratic-varying triangular

load in the x direction (qDz) for n ¼ 1; (b) a vertical quadratic-varying triangular load in the x direction (qDz) for n ¼ 10; (c) a vertical

quadratic-varying triangular load in the y direction (qEz) for n ¼ 1; (d) a vertical quadratic-varying triangular load in the y direction

(qEz) for n ¼ 10; (e) a vertical square-root-varying triangular load in the x direction (qDz) for n ¼ 1; (f) a vertical square-root-varying

triangular load in the x direction (qDz) for n ¼ 10; (g) a vertical square-root-varying triangular load in the y direction (qEz) for n ¼ 1 and

(h) a vertical square-root-varying triangular load in the y direction (qEz) for n ¼ 10.
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surface displacement increases with the increase of deformability in the direction parallel to the applied
load. It also can be observed that if the load intensity for the vertical quadratic-varying triangular load in

the y direction is not large enough, the influence on the induced vertical surface displacement is little

comparing with other cases.

Secondly, the non-dimensional vertical normal stress (rtðq3zÞ
zz =qDz, rtðq4zÞ

zz =qEz, rtðq5zÞ
zz =qDz, rtðq6zÞ

zz =qEz) for

Rocks 1–7 below the point C (at depth z from the surface) induced by present four loading types acting on

the boundary surface vs. the non-dimensional factor m (m ¼ l=z), for n ¼ 1; 10 (n ¼ w=z), are reported in

Figs. 4(a)–(h). In these figures, the non-dimensional factor nð¼ w=zÞ is adopted for investigating the

influence of the dimensions of loaded region on the vertical normal stress. Figs. 4(a) and (b) indicate the
stresses at point C with depth z from the surface induced by a vertical quadratic-varying triangular load in
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Fig. 4 (continued)
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the x direction for n ¼ 1; 10, respectively. The magnitude of non-dimensional vertical normal stress de-
creases with the increase of E=E0 (Rocks 1, 2, and 3), and increases with the increase of G=G0 (Rocks 1, 6,

and 7), but is little affected by the ratio of t=t0 (Rocks 1, 4, and 5). That is, the computed value obeys the

order: Rock 7>Rock 6>Rock 1 (isotropy) @Rock 4 @Rock 5>Rock 2>Rock 3. However, it should be

noted that the trend of this result would be reversed with the increase of the non-dimensional factor m. It
means that for a given value of n (¼ 1, 10), the non-dimensional factor m does play a great influence on the

induced vertical normal stress. Figs. 4(c) and (d) plot the stress due to a vertical quadratic-varying trian-

gular load in the y direction for n ¼ 1; 10, respectively. The trend of Fig. 4(c) is similar to that of Figs. 4(a)

and (b); nevertheless, in Fig. 4(d), the magnitude of induced vertical normal stress follows the order: Rock
3>Rock 2>Rock 1 (isotropy) @Rock 4 @Rock 5>Rock 6>Rock 7. Figs. 4(e) and (f) reveal the stress

subjected to a vertical square-root-varying triangular load in the x direction for n ¼ 1; 10, respectively.
Also, the calculated trends of Figs. 4(e) and (f) are similar to those of Figs. 4(a) and (b), respectively. Figs.

4(g) and (h) display the stress caused by a vertical square-root-varying triangular load in the y direction for

n ¼ 1; 10, respectively. In Fig. 4(g), the vertical normal stress decreases with the increase of E=E0 and G=G0,
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Fig. 5. Effect of loading types on the vertical surface displacement for Rock 6: (a) a vertical uniform triangular load (qCz), a vertical

linearly varying, quadratic-varying, and square-root-varying triangular load in the x direction (qDz) and (b) a vertical uniform trian-

gular load (qCz), a vertical linearly varying, quadratic-varying, and square-root-varying triangular load in the y direction (qEz).

C.-D. Wang et al. / International Journal of Solids and Structures 41 (2004) 3013–3030 3027
and still little affected by the ratio of t=t0 (Rock 1@Rock 4 @Rock 5>Rock 6>Rock 7>Rock 2>Rock 3).

It also can be found that the trend of Fig. 4(h) (Rock 3>Rock 2>Rock 1 @ Rock 4 @Rock 5>Rock

6>Rock 7) is considerably different from that of Fig. 4(g). From Figs. 4(a)–(h), if the load intensity in the

case of n ¼ 10 for the quadratic-varying triangular load in the y direction is not large enough, the effect on

the induced vertical normal stress is also little comparing with other cases. The results of these two figures

(Figs. 3 and 4) show the displacement and stress induced by the present loading types strongly depend on

the type and degree of rock anisotropy, and the dimensions of loaded area.

Finally, Figs. 5 and 6 illustrate the effect of different loading types on the displacement and stress for
Rock 6 (transversely isotropy, E=E0 ¼ t=t0 ¼ 1:0, G=G0 ¼ 2:0), respectively. The right-angled triangular

loads include seven different types, respectively, a uniform load (Wang and Liao, 2001), a linearly varying

load in the x direction (Wang and Liao, 2001), a linearly varying load in the y direction (Wang and Liao,

2001), and the proposed four loading cases in this paper. Fig. 5(a) presents the normalized vertical surface

displacement for Rock 6 at the surface point C ((utðq0zÞz =ð1 � qCzÞ, utðq1zÞz =ð1 � qDzÞ, utðq3zÞz =ð1 � qDzÞ,
utðq5zÞz =ð1 � qDzÞ), induced by a uniform load (qCz), a linearly varying, a quadratic-varying, and a square-

root-varying distributed load in the x direction (qDz) vs. w=l. Similarly, Fig. 5(b) depicts the induced

displacement ((utðq0zÞz =ð1 � qCzÞ, utðq2zÞz =ð1 � qDzÞ, utðq4zÞz =ð1 � qDzÞ, utðq6zÞz =ð1 � qDzÞ) by various loads dis-
tributed in the y direction. Fig. 5(a) shows that the order induced displacement follows: the uniform

load> the square-root-varying load in the x direction > the quadratic-varying load in the x direction @ the
linearly varying load in the x direction. However, the trend of Fig. 5(b) differs a little from that of Fig. 5(a).

Figs. 6(a)–(b), and Figs. 6(c)–(d) delineate the non-dimensional vertical normal stress for Rock 6 below the

pointC (at depth z from the surface; rtðq0zÞ
zz =qCz, rtðq1zÞ

zz =qDz, rtðq3zÞ
zz =qDz, rtðq5z

zz Þ=qDz in Figs. 6(a)–(b), and rtðq0zÞ
zz =qCz,

rtðq2zÞ
zz =qEz, rtðq4zÞ

zz =qEz, rtðq6zÞ
zz =qEz in Figs. 6(c)–(d)), induced by the same loads as described respectively in Figs.

5(a) and (b), when n ¼ 1; 10. In Figs. 6(a) and (b), the orders induced stress for n ¼ 1; 10 are similar to those

of in Figs. 5(a) and (b), respectively. However, in Figs. 6(c) and (d), especially, the magnitude of induced
stress by square-root-varying loads in the y direction for n ¼ 1; 10 increases markedly even when m > 10.

From Figs. 5 and 6, they are shown that the effect of loading types on the displacement and stress is very

explicit.
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Fig. 6. Effect of loading types on the vertical normal stress for Rock 6: (a) a vertical uniform triangular load (qCz), a vertical linearly

varying, quadratic-varying, and square-root-varying triangular load in the x direction (qDz) for n ¼ 1; (b) a vertical uniform triangular

load (qCz), a vertical linearly varying, quadratic-varying, and square-root-varying triangular load in the x direction (qDz) for n ¼ 10; (c)

a vertical uniform triangular load (qCz), a vertical linearly varying, quadratic-varying, and square-root-varying triangular load in the y
direction (qEz) for n ¼ 1 and (d) a vertical uniform triangular load (qCz), a vertical linearly varying, quadratic-varying, and square-root-

varying triangular load in the y direction (qEz) for n ¼ 10.
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The above examples are presented to elucidate the solutions and clarify how the type and degree of rock

anisotropy, the dimensions of loaded area, and the loading types will influence the displacement and stress

in an isotropy/transversely isotropic medium. Also, the results reveal that the induced displacement and

stress by non-linearly varying loads acting on a right-angled triangle for a transversely isotropic half-space

are easily computed by the present solutions. Hence, in engineering practice, it is no more applicable to

estimate the displacements and stresses by the traditional isotropic solutions, or frequently assuming the

applied loads are uniformly or linearly varying distributed over a triangular region in a transversely iso-

tropic half-space.



Table 2

Elastic properties for different rocks

Rock type E=E0 t=t0 G=G0

Rock 1. Isotropy 1.0 1.0 1.0

Rock 2. Transversely isotropy 2.0 1.0 1.0

Rock 3. Transversely isotropy 3.0 1.0 1.0

Rock 4. Transversely isotropy 1.0 0.75 1.0

Rock 5. Transversely isotropy 1.0 1.5 1.0

Rock 6. Transversely isotropy 1.0 1.0 2.0

Rock 7. Transversely isotropy 1.0 1.0 3.0

E and E0: Young�s moduli in the plane of transverse isotropy and in a direction normal to it, respectively.

t, t0: Poisson�s ratios characterizing the lateral strain response in the plane of transverse isotropy to a stress acting parallel or normal

to it, respectively.

G0: Shear modulus in planes normal to the plane of transverse isotropy.
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4. Conclusions

Integrating the elementary functions of point load solutions yields the solutions for displacements and

stresses in a transversely isotropic half-space subjected to three-dimensional, buried, non-linearly varying

triangular loads. The solutions are limited to planes of transverse isotropy that are parallel to the horizontal

surface of the half-space. The loading types include a quadratic-varying load in the x direction, a quadratic-

varying load in the y direction, a square-root-varying load in the x direction, a square-root-varying load in

the y direction, all acting on a right-angled triangular area. The present solutions are influenced by the
buried depth (h), the type and degree of material anisotropy (E=E0, m=m0, G=G0), the dimensions of loaded

area (l, w), and the loading types in a transversely isotropic half-space.

A parametric study of the illustrative examples has yielded the following interesting conclusions:

1. The magnitude of induced vertical surface displacement by each loading case follows the order: Rock

3>Rock 7>Rock 2>Rock 6>Rock 5>Rock 1 (isotropy) >Rock 4.

2. The vertical surface displacement increases with the increase of deformability in the direction parallel to

the applied load; particularly, the increases of the ratios of E=E0 and G=G0 do have a great effect on the
displacement.

3. The ratios E=E0 (t=t0 ¼ G=G0 ¼ 1) and G=G0 (E=E0 ¼ t=t0 ¼ 1) strongly influence the non-dimensional

vertical normal stress due to each loading case; however, the ratio t=t0 (E=E0 ¼ G=G0 ¼ 1) has little effect

on it.

4. The magnitude of induced vertical normal stress has no unified trend; nevertheless, the results show the

induced stress by each loading case heavily relies on the type and degree of rock anisotropy, and the

dimensions of loaded area.

5. If the load intensity for the quadratic-varying triangular load in the y direction is not large enough, the
influence on the induced vertical surface displacement and vertical normal stress is little comparing with

other cases.

6. The effect of loading types on the displacement and stress is very explicit; especially, the magnitude of

induced stress by square-root-varying loads in the y direction for n ¼ 1; 10 increases markedly even when

the non-dimensional factor m > 10.

Since the presentation of the derived solutions is clear and concise, the computation of induced dis-

placements and stresses by various non-linearly varying loading types, distributed over a right-angled
triangular area in an isotropic/transversely isotropic half-space is fast and correct. These solutions can more

realistically simulate the actual loading circumstances in many areas of engineering practices, and also can
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be extended to calculate the displacements and stresses at any point by superposition for a transversely

isotropic half-space subjected to three-dimensional, buried/surface, non-linearly varying arbitrarily shaped

loads.
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